Calcolo della derivata terza

Calcolare la derivata terza delle seguenti funzioni: Esercizio 1 \[ f\left(x\right)=x^{\frac{5}{3}} \] Soluzione \[ f’\left(x\right)=\frac{5}{3}x^{\frac{2}{3}} \] Derivando ulteriormente: \[ f”\left(x\right)=\frac{5}{3}\cdot\frac{2}{3}x^{-\frac{1}{3}} \] \[ f”\left(x\right)=\frac{10}{9}x^{-\frac{1}{3}} \] E infine deriviamo per la terza volta: \[ f”’\left(x\right)=\frac{10}{9}\cdot\left(-\frac{1}{3}\right)x^{-\frac{4}{3}} \] \[ f”’\left(x\right)=-\frac{10}{27}x^{-\frac{4}{3}} \] \[ f”’\left(x\right)=-\frac{10}{27\sqrt[3]{x^{4}}} \] Esercizio 2 \[ f\left(x\right)=\ln\sin x \] Soluzione \[ f’\left(x\right)=\frac{\cos x}{\sin x} \] Derivando ulteriormente: \[ […]

Calcolo della derivata seconda

Calcolare la derivata seconda delle seguenti funzioni: Esercizio 1 \[ f\left(x\right)=\sqrt{x} \] Soluzione \[ f’\left(x\right)=\frac{1}{2\sqrt{x}} \] Derivando ulteriormente: \[ f”\left(x\right)=\left(0-2\frac{1}{2\sqrt{x}}\right)\frac{1}{\left(2\sqrt{x}\right)^{2}} \] \[ f”\left(x\right)=-\frac{1}{\sqrt{x}}\cdot\frac{1}{4x} \] \[ f”\left(x\right)=-\frac{1}{4x\sqrt{x}} \] Esercizio 2 \[ f\left(x\right)=\frac{x^{3}}{x+1} \] Soluzione \[ f’\left(x\right)=\frac{3x^{2}\left(x+1\right)-x^{3}}{\left(x+1\right)^{2}} \] \[ f’\left(x\right)=\frac{3x^{3}+3x^{2}-x^{3}}{\left(x+1\right)^{2}} \] \[ f’\left(x\right)=\frac{2x^{3}+3x^{2}}{\left(x+1\right)^{2}} \] Derivando ulteriormente: \[ f”\left(x\right)=\frac{\left(6x^{2}+6x\right)\left(x+1\right)^{2}-\left(2x^{3}+3x^{2}\right)\cdot2\left(x+1\right)}{\left(x+1\right)^{4}} \] \[ f”\left(x\right)=\frac{\left(x+1\right)\left[\left(6x^{2}+6x\right)\left(x+1\right)-\left(4x^{3}+6x^{2}\right)\right]}{\left(x+1\right)^{4}} \] \[ f”\left(x\right)=\frac{6x^{3}+6x^{2}+6x^{2}+6x-4x^{3}-6x^{2}}{\left(x+1\right)^{3}} \] \[ f”\left(x\right)=\frac{2x^{3}+6x^{2}+6x}{\left(x+1\right)^{3}} […]

Applicare la definizione di derivata – Batteria 1

Applicando la definizione di derivata, calcolare la derivata delle seguenti funzioni nel punto indicato a fianco di ciascuna di esse: Esercizio 1 \[ f\left(x\right)=\sqrt{x^{2}-5}\;,\; x_{0}=3 \] Calcoliamo il rapporto incrementale relativamente al punto x=3 e a un generico incremento h: \[ \frac{\Delta y}{\triangle x}=\frac{f\left(3+h\right)-f\left(3\right)}{h} \] Abbiamo che \[ f\left(3\right)=\sqrt{4}=2 \] \[ f\left(3+h\right)=\sqrt{\left(3+h\right)^{2}-5}=\sqrt{h^{2}+6h+4} \] Quindi \[ […]

Applicare la definizione di derivata – Batteria 2

Applicando la definizione di derivata, calcolare la derivata delle seguenti funzioni in un generico punto x del rispettivo dominio. Confrontare il dominio D della funzione data con il dominio D’ della sua funzione derivata. Esercizio 1 \[ f\left(x\right)=\frac{x+1}{x-2} \] Il dominio della funzione data è \[ D=\mathbb{R}-\left\{ 2\right\} \] Calcoliamo il rapporto incrementale relativamente al […]

Derivate – Applicazioni fisiche

Problemi svolti sulle applicazioni fisiche del concetto matematico di derivata di funzione: Derivate e fisica – Problema 1Derivate e fisica – Problema 2Derivate e fisica – Problema 3Derivate e fisica – Problema 4

Derivate e fisica – Problema 4

Un punto si muove di moto armonico su un asse x. Si assuma come legge oraria del moto la seguente espressione: \[ x\left(t\right)=2\sin4\pi t \] Determinare la velocità in funzione del tempo t. Determinare l’accelerazione in funzione del tempo e anche in funzione della posizione x. Soluzione L’espressione della velocità in funzione del tempo si […]

Derivate e fisica – Problema 3

Un corpo, inizialmente fermo, scende lungo un piano inclinato di un angolo alfa rispetto all’orizzontale. Lo spazio percorso all’istante t risulta essere \[ s=f\left(t\right)=\frac{1}{2}\cdot g\cdot\sin\alpha\cdot t^{2} \] Determinare velocità e accelerazione del corpo in funzione del tempo t. Se dopo 2 secondi il corpo ha acquisito una velocità di 9,8m/s, quanto vale l’ inclinazione del […]

Derivate e fisica – Problema 2

La relazione tra la carica elettrica che attraversa la sezione di un conduttore e il relativo tempo è \[ q=e^{-2t+4} \] Determinare l’intensità di corrente in funzione del tempo t. Soluzione Visto che l’intensità di corrente è definita come la variazione di carica fratto la varaziazione di tempo, \[ i=\frac{dq}{dt} \] l’espressione dell’intensità in funzione […]

Derivate e fisica – Problema 1

L’equazione oraria di un punto materiale è \[ s=2t^{2}+4t+4 \] Determinare velocità e accelerazione del punto in funzione del tempo t. Soluzione L’espressione della velocità in funzione del tempo si trova derivando l’equazione oraria nella variabile t: \[ v=s’\left(t\right) \] \[ v=4t+4 \] L’espressione dell’accelerazione in funzione del tempo si trova derivando la funzione velocità […]

Derivate

Un modo semplice per capire cosa sia la derivata è guardare al suo significato geometrico: geometricamente la derivata di una funzione f in un punto Xo è il valore del coefficiente angolare, cioè la tangente trigonometrica dell’angolo formato dalla retta tangente in un punto della curva di equazione y=f(x) e il semiasse positivo delle ascisse. […]