Studio di funzioni – Esercizio 85

Studiare la seguente funzione: \[ f\left(x\right)=\sqrt{1+\left|x\right|} \] Innanzitutto la funzione si può anche scrivere in questo modo: Se \[ x\geq0 \] allora: \[ f\left(x\right)=\sqrt{1+x} \] Se \[ x<0 \] allora: \[ f\left(x\right)=\sqrt{1-x} \] 1) Dominio: \[ 1+\left|x\right|\geq0\rightarrow\left|x\right|\geq-1\;\forall x\mathbb{\in R} \] \[ D=\mathbb{R} \] 2) Simmetrie: \[ f\left(-x\right)=\sqrt{1+\left|-x\right|}=\sqrt{1+\left|x\right|}=f\left(x\right) \] f(x) è pari: per comodità la possiamo […]