Studio di funzioni – Esercizio 91
Studiare la seguente funzione: \[ f\left(x\right)=\frac{e^{x}-1}{x} \] 1) Dominio: \[ x\neq0 \] \[ D=\mathbb{R}-\left\{ 0\right\} \] 2) Simmetrie: \[ f\left(-x\right)=\frac{e^{-x}-1}{-x}=-\frac{e^{-x}-1}{x} \] \[ f\left(-x\right)\neq f\left(x\right) \] \[ f\left(-x\right)\neq-f\left(x\right) \] f(x) non è ne pari, ne dispari. 3) Intersezioni con gli assi: \[ x=0\:\notin D \] \[ \left\{ \begin{array}{c} f\left(x\right)=0\\ e^{x}-1=0 \end{array}\right.\rightarrow\left\{ \begin{array}{c} f\left(x\right)=0\\ e^{x}=1 \end{array}\right.\rightarrow\left\{ \begin{array}{c} […]