Scarica tutti i 101 studi in formato PDF e sostieni il progetto Matepratica con soli 3,99€: clicca qui per effettuare il pagamento, riceverai subito un link via mail dove poter scaricare uno Zip con tutti gli studi pubblicati sul sito in versione PDF. Per ulteriori info scrivi a alberto@matepratica.it
Studiare la seguente funzione: \[ f\left(x\right)=\frac{e^{1-x}}{x^{2}-1} \] 1) Dominio: \[ D=\mathbb{R}-\left\{ \pm1\right\} \] 2) Simmetrie: \[ f\left(-x\right)=\frac{e^{1-\left(-x\right)}}{\left(-x\right)^{2}-1}=\frac{e^{1+x}}{x^{2}-1} \] \[ f\left(-x\right)\neq f\left(x\right) \] \[ f\left(-x\right)\neq-f\left(x\right) \] f(x) non è ne pari ne dispari.
3) Intersezioni con gli assi: \[ \left\{ \begin{array}{c} x=0\\ f\left(x\right)=-e \end{array}\right.\rightarrow\left(0;-e\right)\in f\left(x\right) \] \[ \left\{ \begin{array}{c} y=0\\ e^{\left(1-x\right)}=0 \end{array}\right.\rightarrow\textrm{Ø} \] 4) Segno: \[ f\left(x\right)>0\rightarrow x^{2}-1>0 \] \[ \left\{ \begin{array}{c} f\left(x\right)>0\rightarrow x<-1\:\vee\: x>1\\ f\left(x\right)<0\rightarrow x>-1\:\wedge\: x<1 \end{array}\right. \] 5) Limiti: \[ \lim_{x\rightarrow\pm1}f\left(x\right)=\infty \] x=-1 e x=1 sono quindi asintoti verticali, per la funzione data. \[ \lim_{x\rightarrow+\infty}f\left(x\right)=0 \] y=0 è quindi un asintoto orizzontale. \[ \lim_{x\rightarrow-\infty}f\left(x\right)=+\infty \] Inoltre \[ \lim_{x\rightarrow-\infty}\frac{f\left(x\right)}{x}=\infty \] ne consegue che non ci sono asintoti obliqui.
6) Derivate:
Calcoliamo la derivata prima: \[ f’\left(x\right)=\frac{-e^{1-x}\left(x^{2}-1\right)-e^{1-x}\left(2x\right)}{\left(x^{2}-1\right)^{2}} \] \[ f’\left(x\right)=\frac{-e^{1-x}\left(x^{2}+2x-1\right)}{\left(x^{2}-1\right)^{2}} \] Studiamone il segno: \[ f’\left(x\right)\geq0\rightarrow x^{2}+2x-1\leq0 \] \[ f’\left(x\right)\geq0\rightarrow x\geq-1-\sqrt{2}\:\wedge\: x\leq-1+\sqrt{2} \] Per x compreso tra i due valori -1-rad2 e -1+rad2 la funzione è crescente, per valori esterni sarà quindi decrescente. Otteniamo un minimo per \[ x_{MIN}=-1-\sqrt{2} \] e un massimo per \[ x_{MAX}=-1+\sqrt{2} \]
0>
Scarica tutti i 101 studi in formato PDF e sostieni il progetto Matepratica con soli 3,99€: clicca qui per effettuare il pagamento, riceverai subito un link via mail dove poter scaricare uno Zip con tutti gli studi pubblicati sul sito in versione PDF. Per ulteriori info scrivi a alberto@matepratica.it
Non capisco perché nella derivata prima il primo fattore viene -e in quanto la derivata dell’esponente è 1
La derivata dell’esponente é -1
Nel calcolo del lim per x–> -1 non ho capito come fa ad uscire inf. e^1-x non verrebbe e^1-(-1)= e^2?
sinceramente parlando, parlare di limite bilatero nei seguenti punti non ha senso.
=> che bisogna calcolarsi i limiti per x -> (+/- 1) da sinistra e destra.
In ogni caso sono asintoti verticali poichè facendolo ottieni degli infiniti discordi
tutto molto chiaro!
chiaro… ma non chiarissimo {citazione per cambio di aggettivo }
Se fai i passaggi bene magari si capisce qualcosa… ma così come fai tu a titolo informativo posso scrivere anche la funzione su google e me la calcola… hai anche sbagliato i segni dei massimo e minimo. Molto utile Grazie :)
ah ma ok anche a me vengono al contrario
non riesco a capire lo studio del segno della derivata prima, perchè f(x) si pone >0 ma poi si mette < nella disequazione?
Si neppure io ho capito. Non ci sono cambiamenti di segno quindi non ho capito perchè si pone x^2+2x-1 <0.
perché c’è -e^(1-x) da considerare al numeratore
Grazie…È tutto molto utile
Tutto ok ma come ottieni i valori della X nell equazione della derivata prima non lo capisco . Grazie Anna
ciao mi chiamo Davide, ho un dubbio per quanto riguarda il limite tendente a +infinito che sinceramente non riesco a capire come possa fare 0 in quanto ho provato a fare i calcoli. a me viene e^+infinito/ infinito^2 -1 ora seguendo la tecnica degli ordini degli infiniti è come se mi trovassi sopra +infinito e sotto un numero e quindi dovrebbe fare +infinito. Scusami ma non riesco a capire mi potresti illuminare?
e^1-(+inf) tende a 0. infinito non è definibile ma sai che è un numero esageratamente grande. Prova a prendere la calcolatrice e scrivere e^(1-(5000000)) per esempio… troverai che il risultato è 0. quindi è come se fosse e^1-inf che tende a 0. (ps. è una porcata quella che ho scritto ma rende l’idea) ; )
Perchè non a la derivata seconda?
la derivata seconda?
Ciao albert non mi sono chiare 2 cose.
1) Come fa la funzione ad esistere tra -1 ed 1 quando queste non sono comprese nel dominio?
2) Perchè il limite per infinito esce 0 e non infinito?
Mi scuso per il disturbo.
Saluti, Antonio
Scusa Albert ho una domanda, nel calcolo dell intersezione perché ponendo y=0 non ti esce nessun punto? Quando arrivi a e^x-1=0 dovresti applicare il logaritmo e ti viene 1-x=1 quindi x=0, ovvero la funzione passa per l origine
mi trovo con tutto .. il problema fondamentale secondo me è il lim x–> – inf .. non mi riesce proprio
albert un chiarimento sullo studio della derivata prima. mi sfugge il motivo per cui non studi il denominatore ma solo il numeratore
Ciao Albert qual è la risoluzione della disequazione -e^(1-x)>0? Non riesco a capire come tu l’ abbia svolta quando c’è da studiare la derivata prima