Integrali definiti – Batteria 2
Calcolare i seguenti integrali definiti: Esercizio 1 \[ \int_{1}^{e}\frac{x-1}{x^{2}}dx \] Soluzione Calcoliamo l’integrale indefinito \[ F\left(x\right)=\int\frac{x-1}{x^{2}}dx \] \[ F\left(x\right)=\int\frac{x}{x^{2}}dx-\int\frac{1}{x^{2}}dx \] \[ F\left(x\right)=\int\frac{1}{x}dx-\int x^{-2}dx \] \[ F\left(x\right)=\ln x+\frac{1}{x}+C \] Utilizziamo ora la formula fondamentale del calcolo integrale: \[ \int_{a}^{b}f\left(x\right)dx=F\left(b\right)-F\left(a\right) \] ovvero \[ \int_{1}^{e}\frac{x-1}{x^{2}}dx=F\left(e\right)-F\left(1\right) \] \[ \int_{1}^{e}\frac{x-1}{x^{2}}dx=\left(\ln e+\frac{1}{e}+C\right)-\left(\ln1+1+C\right) \] \[ \int_{1}^{e}\frac{x-1}{x^{2}}dx=1+\frac{1}{e}+C-0-1-C=\frac{1}{e} \] Quindi otteniamo: \[ \int_{1}^{e}\frac{x-1}{x^{2}}dx=\frac{1}{e} \] […]