Limiti di funzioni razionali intere
Calcolare i seguenti limiti: Esercizio 1 \[ \lim_{x\rightarrow+\infty}\left(-x^{5}+x^{2}\right) \] Soluzione \[ \lim_{x\rightarrow+\infty}\left(-x^{5}+x^{2}\right)=\lim_{x\rightarrow+\infty}\left[x^{5}\left(-1+\frac{1}{x^{3}}\right)\right] \] Risulta \[ \lim_{x\rightarrow+\infty}x^{5}=+\infty \] e \[ \lim_{x\rightarrow+\infty}\left(-1+\frac{1}{x^{3}}\right)=-1 \] quindi \[ \lim_{x\rightarrow+\infty}\left(-x^{5}+x^{2}\right)=-\infty \] Esercizio 2 \[ \lim_{x\rightarrow+\infty}\left(-3x^{4}+5x^{3}-x^{2}-x+2\right) \] Soluzione \[ \lim_{x\rightarrow+\infty}\left(-3x^{4}+5x^{3}-x^{2}-x+2\right)=\lim_{x\rightarrow+\infty}\left[x^{4}\left(-3+\frac{5}{x}-\frac{1}{x^{2}}-\frac{1}{x^{3}}+\frac{2}{x^{4}}\right)\right] \] Risulta \[ \lim_{x\rightarrow+\infty}x^{4}=+\infty \] e \[ \lim_{x\rightarrow+\infty}\left(-3+\frac{5}{x}-\frac{1}{x^{2}}-\frac{1}{x^{3}}+\frac{2}{x^{4}}\right)=-3 \] quindi \[ \lim_{x\rightarrow+\infty}\left(-3x^{4}+5x^{3}-x^{2}-x+2\right)=-\infty \] Esercizio 3 \[ \lim_{x\rightarrow\infty}\left(-5x^{4}+x^{3}-2x^{2}\right) \] Soluzione \[ \lim_{x\rightarrow\infty}\left(-5x^{4}+x^{3}-2x^{2}\right)=\lim_{x\rightarrow\infty}\left[x^{4}\left(-5+\frac{1}{x}-\frac{2}{x^{2}}\right)\right] \] […]