Trigonometria – Esercizio 36
Nel triangolo ABC il lato AC ha misura l, il lato BC ha misura 2l. Determina gli angoli del triangolo sapendo chefra i due lati noti e l’angolo CAB intercorre la seguente relazione: BCsen2(CAB) – ACtan(2CAB) = 0 .
Nel triangolo ABC il lato AC ha misura l, il lato BC ha misura 2l. Determina gli angoli del triangolo sapendo chefra i due lati noti e l’angolo CAB intercorre la seguente relazione: BCsen2(CAB) – ACtan(2CAB) = 0 .
Trigonometria – Esercizio 27Trigonometria – Esercizio 28Trigonometria – Esercizio 29Trigonometria – Esercizio 30Trigonometria – Esercizio 31Trigonometria – Esercizio 32Trigonometria – Esercizio 33Trigonometria – Esercizio 34Trigonometria – Esercizio 35Trigonometria – Esercizio 36
La base maggiore del trapezio rettangolo ABCD è AB = 48 cm ; la diagonale maggiore BD è lunga 32√3 cm ed è bisettrice dell’angolo ABC. Determina gli angoli, il perimetro e l’area del trapezio.
Nel triangolo ABC sono dati il lato AB = 35 cm , il lato AC = 21 cm e tg(ABC) = 3/4 . Determina gli elementi incogniti del triangolo.
Il parallelogramma ABCD ha l’angolo ABC = 2/3 π e la sua bisettrice incontra la diagonale AC nel punto P in modo che AP = 35/8 e BP = 15/8 . Determina i lati del parallelogramma.
Il rettangolo ABCD ha i lati AB = 40 cm e BC = 25 cm ; il parallelogramma ABC’D’ ha i vertici C’ e D’ appartenenti alla retta CD . Il perimetro di ABC’D’ è i 6/5 del perimetro di ABCD. Calcola gli angoli del parallelogramma ABC’D’.
In un trapezio scaleno ABCD le basi misurano: AB = 5√3 + 21 e CD = 9 . Sapendo che l’angolo in B è 60° e che cos(CDA)= – 5/13 calcola la lunghezza dei lati obliqui.
Considera il triangolo rettangolo ABC inscritto in una circonferenza di diametro AB = 2r : sul lato BC costruisci il quadrato BPQC esternamente al triangolo. Sai che il trapezio ABPQ ha area S = (4 + 3√2)/2 * r^2 : quanto misura l’angolo BAC?
Determina gli angoli di un trapezio isoscele sapendo che la base maggiore è AB = 14 , la base minore è CD = 8 e il rapporto fra il quadrato della diagonale e quadrato del lato obliquo è 37/9 .
Nel triangolo isoscele ABC il rapporto fra il raggio della circonferenza circoscritta e la base AB è √2/2 . Trova l’ampiezza dell’angolo al vertice ACB .