Trigonometria – Esercizio 23

Considera il triangolo rettangolo ABC inscritto in una circonferenza di diametro AB = 2r : sul lato BC costruisci il quadrato BPQC esternamente al triangolo. Sai che il trapezio ABPQ ha area S = (4 + 3√2)/2 * r^2 : quanto misura l’angolo BAC?

Trigonometria – Triangoli qualunque 2

Trigonometria – Esercizio 27Trigonometria – Esercizio 28Trigonometria – Esercizio 29Trigonometria – Esercizio 30Trigonometria – Esercizio 31Trigonometria – Esercizio 32Trigonometria – Esercizio 33Trigonometria – Esercizio 34Trigonometria – Esercizio 35Trigonometria – Esercizio 36

Trigonometria – Esercizio 22

In un trapezio scaleno ABCD le basi misurano: AB = 5√3 + 21 e CD = 9 . Sapendo che l’angolo in B è 60° e che cos(CDA)= – 5/13 calcola la lunghezza dei lati obliqui.

Trigonometria – Esercizio 36

Nel triangolo ABC il lato AC ha misura l, il lato BC ha misura 2l. Determina gli angoli del triangolo sapendo chefra i due lati noti e l’angolo CAB intercorre la seguente relazione: BCsen2(CAB) – ACtan(2CAB) = 0 .

Trigonometria – Esercizio 21

Il rettangolo ABCD ha i lati AB = 40 cm e BC = 25 cm ; il parallelogramma ABC’D’ ha i vertici C’ e D’ appartenenti alla retta CD . Il perimetro di ABC’D’ è i 6/5 del perimetro di ABCD. Calcola gli angoli del parallelogramma ABC’D’.

Trigonometria – Esercizio 35

I lati obliqui di un trapezio isoscele hanno misura l e sono congruenti alla base minore. Determina gli angoli alla base maggiore sapendo che l’area vale √11/3 l^2 . L’esercizio si può concludere con le formule parametriche: \[ \sin\alpha=\frac{2t}{1+t^{2}} \] \[ \cos\alpha=\frac{1-t^{2}}{1+t^{2}} \] con \[ t=\tan\frac{\alpha}{2} \] Otteniamo: \[ \frac{2t}{1+t^{2}}+\frac{1-t^{2}}{1+t^{2}}\cdot\frac{2t}{1+t^{2}}-\frac{\sqrt{11}}{3}=0 \] \[ 6t\left(1+t^{2}\right)+6t\left(1-t^{2}\right)-\sqrt{11}\left(1+t^{2}\right)^{2}=0 \] \[ […]

Trigonometria – Esercizio 20

Il parallelogramma ABCD ha l’angolo ABC = 2/3 π e la sua bisettrice incontra la diagonale AC nel punto P in modo che AP = 35/8 e BP = 15/8 . Determina i lati del parallelogramma.

Trigonometria – Esercizio 34

Del triangolo ABC sono noti i seguenti elementi: AB = 10 cm , BAC = 45° , ABC = 30°. Determina i lati AC e BC. Considera il punto P appartenente al lato AC e posto PBA = x risolvi la seguente equazione: PA + PB = 5/3 √2(3 + √3). Esprimi poi la funzione […]

Trigonometria – Esercizio 33

Due semicirconferenze di diametri AB = BC = 2r sono tangenti esternamente in B. Presi i punti P sulla prima e Q sulla seconda in modo che PBQ = 45°. Calcola x = PBA in modo che: BQ + √2PB = √3/2 AB .