Limiti notevoli – Formulario

Principali limiti notevoli e ricorrenti: \[ \lim_{x\rightarrow0}\frac{k}{x}=\infty \] \[ \lim_{x\rightarrow\infty}\frac{k}{x}=0 \] \[ \lim_{x\rightarrow+\infty}x^{n}=+\infty \] \[ \lim_{x\rightarrow-\infty}x^{n}=+\infty\;,\; n\; pari \] \[ \lim_{x\rightarrow-\infty}x^{n}=-\infty\;,\; n\; dispari \] Se a è compreso tra 0 e 1: \[ \lim_{x\rightarrow-\infty}a^{x}=+\infty \] \[ \lim_{x\rightarrow+\infty}a^{x}=0 \] \[ \lim_{x\rightarrow0^{+}}\log_{a}x=+\infty \] \[ \lim_{x\rightarrow+\infty}\log_{a}x=-\infty \] Se a è maggiore di 1: \[ \lim_{x\rightarrow-\infty}a^{x}=0 \] \[ \lim_{x\rightarrow+\infty}a^{x}=+\infty […]

Limiti di funzioni – Infiniti

Determinare l’ordine e la parte principale dei seguenti infiniti: Esercizio 1 \[ f\left(x\right)=x^{3}-x^{2}+1 \] per \[ x\rightarrow\infty \] Soluzione In questo caso l’infinito campione è \[ \varphi\left(x\right)=x \] Occorre determinare \[ \alpha>0 \] in modo che \[ \lim_{x\rightarrow\infty}\frac{x^{3}-x^{2}+1}{x^{\alpha}} \] sia finito e diverso da zero. Osserviamo che, per \[ \alpha=3 \] otteniamo \[ \lim_{x\rightarrow\infty}\frac{x^{3}-x^{2}+1}{x^{\alpha}}=\lim_{x\rightarrow\infty}\frac{x^{3}-x^{2}+1}{x^{3}}=1 \] […]

Limiti di funzioni – Infinitesimi

Determinare l’ordine e la parte principale dei seguenti infinitesimi: Esercizio 1 \[ f\left(x\right)=x^{2}-1 \] per \[ x\rightarrow1 \] Soluzione In questo caso l’infinitesimo campione è \[ \varphi\left(x\right)=x-1 \] Occorre determinare \[ \alpha>0 \] in modo che \[ \lim_{x\rightarrow1}\frac{x^{2}-1}{\left(x-1\right)^{\alpha}} \] sia finito e diverso da zero. Procediamo come segue: \[ \lim_{x\rightarrow1}\frac{x^{2}-1}{\left(x-1\right)^{\alpha}}=\lim_{x\rightarrow1}\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^{\alpha}} \] \[ \lim_{x\rightarrow1}\frac{x^{2}-1}{\left(x-1\right)^{\alpha}}=\lim_{x\rightarrow1}\frac{\left(x-1\right)}{\left(x-1\right)^{\alpha}}\cdot\lim_{x\rightarrow1}\left(x+1\right) \] Osserviamo […]

Limiti notevoli – Batteria 2

Ricordando i limiti notevoli, calcolare i seguenti limiti: Esercizio 1 \[ \lim_{x\rightarrow0}\frac{\sin\frac{x}{2}}{x} \] Questo limite si presenta nella forma \[ \left[\frac{0}{0}\right] \] Operiamo la sostituzione \[ t=\frac{x}{2}\rightarrow x=2t \] osserviamo che \[ \lim_{x\rightarrow0}t=\lim_{x\rightarrow0}\frac{x}{2}=0 \] quindi \[ \lim_{x\rightarrow0}\frac{\sin\frac{x}{2}}{x}=\lim_{t\rightarrow0}\frac{\sin t}{2t}=\frac{1}{2}\lim_{t\rightarrow0}\frac{\sin t}{t} \] Ricordando il limite notevole \[ \lim_{t\rightarrow0}\frac{\sin t}{t}=1 \] otteniamo \[ \lim_{x\rightarrow0}\frac{\sin\frac{x}{2}}{x}=\frac{1}{2}\lim_{t\rightarrow0}\frac{\sin t}{t}=\frac{1}{2}\cdot1=\frac{1}{2} \] Esercizio 2 […]

Limiti notevoli – Batteria 1

Ricordando i limiti notevoli, calcolare i seguenti limiti: Esercizio 1 \[ \lim_{x\rightarrow\infty}\left(1+\frac{1}{x}\right)^{2x} \] Sfruttando una proprietà delle potenze, il limite si può scrivere così: \[ \lim_{x\rightarrow\infty}\left(1+\frac{1}{x}\right)^{2x}=\lim_{x\rightarrow\infty}\left[\left(1+\frac{1}{x}\right)^{x}\right]^{2} \] Ricordando il limite notevole \[ \lim_{x\rightarrow\infty}\left(1+\frac{1}{x}\right)^{x}=e \] avremo \[ \lim_{x\rightarrow\infty}\left(1+\frac{1}{x}\right)^{2x}=\lim_{x\rightarrow\infty}\left[\left(1+\frac{1}{x}\right)^{x}\right]^{2}=e^{2} \] Esercizio 2 \[ \lim_{x\rightarrow0}\left(1+2x\right)^{\frac{1}{x}} \] operiamo la sostituzione \[ z=\frac{1}{2x}\rightarrow x=\frac{1}{2z} \] Osserviamo che \[ \lim_{x\rightarrow0}z=\lim_{x\rightarrow0}\frac{1}{2x}=\infty \] […]

Limiti di funzioni composte – Batt. 2

Calcolare i seguenti limiti: Esercizio 1 \[ \lim_{x\rightarrow\infty}\sin\frac{1}{x} \] Calcoliamo il limite della funzione che sta all’argomento del seno: \[ \lim_{x\rightarrow\infty}\frac{1}{x}=0 \] Visto che il limite della funzione che sta all’argomento del seno tende a 0, avremo: \[ \lim_{x\rightarrow\infty}\sin\frac{1}{x}=\lim_{x\rightarrow\infty}\sin0=0 \] Esercizio 2 \[ \lim_{x\rightarrow-\infty}\cos e^{x} \] Calcoliamo il limite della funzione che sta all’argomento del […]

Limiti di funzioni composte – Batt. 1

Calcolare i seguenti limiti: Esercizio 1 \[ \lim_{x\rightarrow2}\sqrt{x^{2}+3x+6} \] Calcoliamo il limite della funzione che sta sotto radice: \[ \lim_{x\rightarrow2}\left(x^{2}+3x+6\right)=4+6+6=16 \] Visto che il radicando tende a 16, avremo: \[ \lim_{x\rightarrow2}\sqrt{x^{2}+3x+6}=\lim_{x\rightarrow2}\sqrt{16}=4 \] Esercizio 2 \[ \lim_{x\rightarrow1}\sqrt{\frac{x^{2}-1}{x-1}} \] Calcoliamo il limite della funzione che sta sotto radice: \[ \lim_{x\rightarrow1}\frac{x^{2}-1}{x-1}=\lim_{x\rightarrow1}\frac{\left(x-1\right)\left(x+1\right)}{x-1}=\lim_{x\rightarrow1}\left(x+1\right)=2 \] Visto che il radicando tende a […]

Limite infinito per x che tende all’infinito – Batteria 2

Verificare le seguenti uguaglianze, applicando la definizione di limite infinito di una funzione per x che tende all’infinito: Esercizio 1 \[ \lim_{x\rightarrow-\infty}\sqrt{1-x}=+\infty \] La funzione è definita per \[ x\leq1 \] Occorre mostrare che, comunque si scelga \[ M>0 \] arbitrariamente grande, la disuguaglianza \[ \sqrt{1-x}>M \] sia verificata per tutti i valori di x […]