35 thoughts on “Studio di funzioni – Esercizio 46

    1. cosa significa la notazione delta Unione con un trattino sotto -> insieme vuoto -> no flessi

  1. Salve, non capisco perchè nello studio del segno f(x)>0 viene fuori f(x)>0 in (-inf, -6) U (1, +inf) ed f(x)+inf f(x)= 0 [Hopital] mentre nel grafico questo limite vale +inf. Devo tenere in considerazione il calcolo classico o quello con de l’Hopital?

    1. Ma se sostituisci -5/2 alla funzione diventa negativa e non esiste il log di un numero negativo

    1. Grazie. Rappresenta il punto di cambio segno del numeratore della frazione che ti fornisce il segno della derivata. Poi però scopri che in quel punto la funzione non esiste (vedi dominio), quindi non potrà mai essere nè un massimo nè un minimo

    1. Quando il delta di una equazione di secondo grado è minore di zero l’equazione risulta impossibile (non ha soluzioni)

    1. il numeratore è sempre negativo, il denominatore sempre positivo (è un quadrato), quindi la derivata seconda sempre negativa (-/+=-) e la funzione sempre concava

    1. f è una funzione composta dalla funzione esterna (logaritmo) e dalla funzione interna (il trinomio argomento del logaritmo) quindi la derivata vale:

      Derivata della funzione esterna per derivata dell’argomento:
      f’= 1/(x^2+5x-6) * (2x+5) = (2x+5)/(x^2+5x-6)

    1. La derivata del numeratore f(x) è
      1/(x^2+5x-6) * (2x+5) = (2x+5)/(x^2+5x-6)

      La derivata del denominatore x è 1

      Quindi

      lim f(x)/x= ((2x+5)/(x^2+5x-6)) /1 =
      lim (2x+5)/(x^2+5x-6) =
      lim (x(2+5/x)) / (x^2(1+5/x-6/x^2))=
      lim (2+5/x) / (x(1+5/x-6/x^2))=
      (2+0)/(inf*(1+0-0)) = 2/inf= inf

  2. La simbologia prevede che “Log” sia sempre in base 10, “ln” sempre base e, mentre il “log” senza base specificata alcuni testi lo intendono come base 10, altri (ed è il mio caso) come base e.

    In ogni caso, qualsiasi sia la base (10 oppure e), il passaggio è:

    log(g(x))>0 –> g(x)>1

  3. è sbagliato impostare il segno come x^2+5x-6 >0 ?? non và trattato come logaritmo in base dieci? qui invece è trattato come un logaritmo in base e !! alloranon sarebbe dovuta essere ln f(x) e non log ??? grazie

  4. credo che sia sbagliata la scrittura dell’intersezione degli assi per y=0
    log(x^2 + 5x -6) =0
    e^log(x^2 +5x -6)= e^0
    x^2 +5x -6 = 1
    ecc..
    corretto ?

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *