Studio di funzioni – Esercizio 7
Studiare la seguente funzione: \[ f\left(x\right)=\frac{x}{\sqrt{x-2}} \] 1) Dominio: \[ D=\left(2;+\infty\right) \] 2) Simmetrie: \[ f\left(-x\right)=\frac{-x}{\sqrt{-x-2}} \] \[ f\left(-x\right)\neq f\left(x\right) \] \[ f\left(-x\right)\neq-f\left(x\right) \] f(x) non è ne pari ne dispari. 3) Intersezioni con gli assi: \[ \left\{ \begin{array}{c} f\left(x\right)=0\\ x=0 \end{array}\right.\rightarrow x=0\notin D \] 4) Segno: \[ f\left(x\right)>0\:\forall x\in D \] 5) Limiti: \[ […]