Problemi di massimo e di minimo

Problemi svolti, raggruppati per argomento, relativi al calcolo dei massimi e dei minimi in un intervallo chiuso e limitato (dettato dalle limitazioni geometriche dell’esercizio): Problemi di massimo e minimo – Triangoli (6 problemi svolti) Problemi di massimo e minimo – Quadrilateri (6 problemi svolti) Problemi di massimo e minimo – Circonferenza (6 problemi svolti) Problemi […]

Limiti notevoli – Batteria 1

Ricordando i limiti notevoli, calcolare i seguenti limiti: Esercizio 1 \[ \lim_{x\rightarrow\infty}\left(1+\frac{1}{x}\right)^{2x} \] Sfruttando una proprietà delle potenze, il limite si può scrivere così: \[ \lim_{x\rightarrow\infty}\left(1+\frac{1}{x}\right)^{2x}=\lim_{x\rightarrow\infty}\left[\left(1+\frac{1}{x}\right)^{x}\right]^{2} \] Ricordando il limite notevole \[ \lim_{x\rightarrow\infty}\left(1+\frac{1}{x}\right)^{x}=e \] avremo \[ \lim_{x\rightarrow\infty}\left(1+\frac{1}{x}\right)^{2x}=\lim_{x\rightarrow\infty}\left[\left(1+\frac{1}{x}\right)^{x}\right]^{2}=e^{2} \] Esercizio 2 \[ \lim_{x\rightarrow0}\left(1+2x\right)^{\frac{1}{x}} \] operiamo la sostituzione \[ z=\frac{1}{2x}\rightarrow x=\frac{1}{2z} \] Osserviamo che \[ \lim_{x\rightarrow0}z=\lim_{x\rightarrow0}\frac{1}{2x}=\infty \] […]

Studio di funzioni – Esercizio 87

Studiare la seguente funzione: \[ f\left(x\right)=\sqrt{\frac{1-\left|x\right|}{1+\left|x\right|}} \] Innanzitutto la funzione si può anche scrivere in questo modo: Se \[ x\geq0 \] allora: \[ f\left(x\right)=\sqrt{\frac{1-x}{1+x}} \] Se \[ x<0 \] allora: \[ f\left(x\right)=\sqrt{\frac{1+x}{1-x}} \] 1) Dominio: \[ \frac{1-\left|x\right|}{1+\left|x\right|}\geq0 \] \[ Num\geq0\rightarrow1-\left|x\right|\geq0\rightarrow\left|x\right|\leq1\rightarrow x\in\left[-1;+1\right] \] \[ Den>0\rightarrow1+\left|x\right|>0\rightarrow\left|x\right|>-1\;\forall x\in\mathbb{R} \] \[ D=\left[-1;+1\right] \] 2) Simmetrie: \[ f\left(-x\right)=\sqrt{\frac{1-\left|-x\right|}{1+\left|-x\right|}}=\sqrt{\frac{1-\left|x\right|}{1+\left|x\right|}}=f\left(x\right) \] f(x) […]

Equazioni fratte – Problema 4

In un triangolo rettangolo un cateto supera l’altro di 10m e il rapporto tra la somma della terza parte del cateto minore con la quarta parte del maggiore e la somma dei cateti è 2/7. Determinare la lunghezza del perimetro. Soluzione Se il cateto minore lo chiamiamo x, il maggiore sarà 10+x, quindi l’equazione da […]

Studio di funzioni – Esercizio 86

Studiare la seguente funzione: \[ f\left(x\right)=\sqrt{1-\left|x\right|} \] Innanzitutto la funzione si può anche scrivere in questo modo: Se \[ x\geq0 \] allora: \[ f\left(x\right)=\sqrt{1-x} \] Se \[ x<0 \] allora: \[ f\left(x\right)=\sqrt{1+x} \] 1) Dominio: \[ 1-\left|x\right|\geq0\rightarrow\left|x\right|\leq+1\rightarrow x\in\left[-1;+1\right] \] \[ D=\left[-1:+1\right] \] 2) Simmetrie: \[ f\left(-x\right)=\sqrt{1-\left|-x\right|}=\sqrt{1-\left|x\right|}=f\left(x\right) \] f(x) è pari: per comodità la possiamo studiare […]

Equazioni fratte – Problema 3

Per coprire una distanza di 720 Km, un treno impiega un tempo eguale al sestuplo del tempo che impiegherebbe un aereo che viaggia ad una velocità di 600 Km/h superiore a quella del treno. Determinare la velocità del treno. Soluzione Chiamando x la velocità del treno, la velocità dell’aereo sarà: \[ V_{A}=x+600 \] Se il […]

Limiti di funzioni razionali fratte – Batteria 2

Calcolare i seguenti limiti: Esercizio 1 \[ \lim_{x\rightarrow\infty}\frac{3x^{2}+5x-1}{4x^{2}-5x+1} \] \[ \lim_{x\rightarrow\infty}\frac{3x^{2}+5x-1}{4x^{2}-5x+1}=\lim_{x\rightarrow\infty}\frac{x^{2}\left(3+\frac{5}{x}-\frac{1}{x^{2}}\right)}{x^{2}\left(4-\frac{5}{x}+\frac{1}{x^{2}}\right)}=\lim_{x\rightarrow\infty}\frac{3+\frac{5}{x}-\frac{1}{x^{2}}}{4-\frac{5}{x}+\frac{1}{x^{2}}}=\frac{3}{4} \] Esercizio 2 \[ \lim_{x\rightarrow\pm\infty}\frac{x^{2}-3x+5}{x+1} \] \[ \lim_{x\rightarrow\pm\infty}\frac{x^{2}-3x+5}{x+1}=\lim_{x\rightarrow\pm\infty}\frac{x^{2}\left(1+\frac{3}{x}+\frac{5}{x^{2}}\right)}{x\left(1+\frac{1}{x}\right)}=\lim_{x\rightarrow\pm\infty}\frac{x\left(1+\frac{3}{x}+\frac{5}{x^{2}}\right)}{1+\frac{1}{x}}=\pm\infty \] Esercizio 3 \[ \lim_{x\rightarrow-\infty}\frac{x^{3}-4x+1}{2-3x} \] \[ \lim_{x\rightarrow-\infty}\frac{x^{3}-4x+1}{2-3x}=\lim_{x\rightarrow-\infty}\frac{x^{3}\left(1-\frac{4}{x}+\frac{1}{x^{3}}\right)}{x\left(\frac{2}{x}-3\right)}=\lim_{x\rightarrow-\infty}\frac{x^{2}\left(1-\frac{4}{x}+\frac{1}{x^{3}}\right)}{\frac{2}{x}-3}=\frac{+\infty}{-3} \] \[ \lim_{x\rightarrow-\infty}\frac{x^{3}-4x+1}{2-3x}=-\infty \] Esercizio 4 \[ \lim_{x\rightarrow+\infty}\frac{5}{x^{3}+x-1} \] \[ \lim_{x\rightarrow+\infty}\frac{5}{x^{3}+x-1}=\lim_{x\rightarrow+\infty}\frac{5}{x^{3}\left(1+\frac{1}{x^{2}}-\frac{1}{x^{3}}\right)}=\frac{5}{+\infty}=0^{+} \]

Equazioni fratte – Problema 2

In una famiglia l’età del padre supera di due anni l’età della moglie, che è il quintuplo dell’età dei due figli gemelli: la sorellina minore è nata due anni dopo i gemelli. Determinare le età attuali dei componenti della famiglia sapendo che il rapporto tra l’età del padre e quella della figlia minore è 8. […]

Studio di funzioni – Esercizio 100

Studiare la seguente funzione: \[ f\left(x\right)=\frac{x^{2}}{2}-x+\ln\left|x+1\right| \] 1) Dominio: \[ x+1\neq0\rightarrow x\neq-1 \] \[ D=\mathbb{R}-\left\{ -1\right\} \] La funzione si può scrivere in questo modo: \[ f\left(x\right)=\left\{ \begin{array}{c} \frac{x^{2}}{2}-x+\ln\left(x+1\right)\; se\; x>-1\\ \frac{x^{2}}{2}-x+\ln\left(-x-1\right)\; se\; x<-1 \end{array}\right. \] 2) Simmetrie: \[ f\left(-x\right)\neq f\left(x\right) \] \[ f\left(-x\right)\neq-f\left(x\right) \] f(x) non è ne pari, ne dispari. 3) Intersezioni con […]

Limiti di funzioni razionali fratte – Batteria 1

Calcolare i seguenti limiti: Esercizio 1 \[ \lim_{x\rightarrow1}\frac{x-4}{2x-5} \] Per x=1 si ha \[ 2x-5=-3\neq0 \] quindi la funzione è continua in x=1, e il limite per x tendente a 1 della stessa sarà coincidente con il valore della funzione in x=1: \[ \lim_{x\rightarrow1}\frac{x-4}{2x-5}=\frac{1-4}{2\cdot1-5}=\frac{-3}{-3}=1 \] Esercizio 2 \[ \lim_{x\rightarrow2^{-}}\frac{2}{x-2} \] Per x=2 si ha \[ […]