Categoria: Analisi Matematica
Integrali doppi – Domini normali – Esercizio 4
Massimi e minimi in 2 variabili – Esercizio 3
Integrali doppi – Domini normali – Esercizio 6
Massimi e minimi vincolati – Esercizio 1
Problema Max e Min di \( f(x,y) = \arctan(x^2 + 4y^2) \) con il vincolo \( g(x,y) = x^2 + y^2 – 4 = 0 \). Considerazioni \( f(x,y) \) è crescente in \( \mathbb{R} \). Dimostrazione \( x^2 + 4y^2 \leq x^2 + 4y^2 \Rightarrow \arctan(x^2 + 4y^2) = \arctan(x_1^2 + 4y_1^2) \) \( […]
Integrali doppi – Domini normali – Esercizio 5
Massimi e minimi vincolati – Esercizio 2
Integrali doppi – Domini normali – Esercizio 1
Integrali definiti – Batteria 2
Calcolare i seguenti integrali definiti: Esercizio 1 \[ \int_{1}^{e}\frac{x-1}{x^{2}}dx \] Soluzione Calcoliamo l’integrale indefinito \[ F\left(x\right)=\int\frac{x-1}{x^{2}}dx \] \[ F\left(x\right)=\int\frac{x}{x^{2}}dx-\int\frac{1}{x^{2}}dx \] \[ F\left(x\right)=\int\frac{1}{x}dx-\int x^{-2}dx \] \[ F\left(x\right)=\ln x+\frac{1}{x}+C \] Utilizziamo ora la formula fondamentale del calcolo integrale: \[ \int_{a}^{b}f\left(x\right)dx=F\left(b\right)-F\left(a\right) \] ovvero \[ \int_{1}^{e}\frac{x-1}{x^{2}}dx=F\left(e\right)-F\left(1\right) \] \[ \int_{1}^{e}\frac{x-1}{x^{2}}dx=\left(\ln e+\frac{1}{e}+C\right)-\left(\ln1+1+C\right) \] \[ \int_{1}^{e}\frac{x-1}{x^{2}}dx=1+\frac{1}{e}+C-0-1-C=\frac{1}{e} \] Quindi otteniamo: \[ \int_{1}^{e}\frac{x-1}{x^{2}}dx=\frac{1}{e} \] […]
Integrali definiti – Batteria 4
Calcolare i seguenti integrali definiti: Esercizio 1 \[ \int_{-1}^{0}\frac{1}{x^{2}+5x+6}dx \] Soluzione Calcoliamo l’integrale indefinito \[ F\left(x\right)=\int\frac{1}{x^{2}+5x+6}dx \] \[ F\left(x\right)=\int\frac{1}{\left(x+3\right)\left(x+2\right)}dx \] \[ \frac{1}{\left(x+3\right)\left(x+2\right)}=\frac{A}{x+3}+\frac{B}{x+2} \] \[ \frac{1}{\left(x+3\right)\left(x+2\right)}=\frac{\left(A+B\right)x+2A+3B}{\left(x+3\right)\left(x+2\right)} \] \[ \left\{ \begin{array}{c} A+B=0\\ 2A+3B=1 \end{array}\right.\rightarrow\left\{ \begin{array}{c} A=-1\\ B=+1 \end{array}\right. \] \[ F\left(x\right)=-\int\frac{1}{x+3}dx+\int\frac{1}{x+2}dx \] \[ F\left(x\right)=\ln\left|\frac{x+2}{x+3}\right|+C \] Utilizziamo ora la formula fondamentale del calcolo integrale: \[ \int_{a}^{b}f\left(x\right)dx=F\left(b\right)-F\left(a\right) \] ovvero […]