Integrali definiti – Batteria 5
Calcolare i seguenti integrali definiti: Esercizio 1 \[ \int_{0}^{1}\arcsin xdx \] Soluzione Calcoliamo per parti l’integrale indefinito \[ F\left(x\right)=\int\arcsin xdx \] \[ f\left(x\right)=\arcsin x\rightarrow f’\left(x\right)=\frac{1}{\sqrt{1-x^{2}}} \] \[ g’\left(x\right)=1\rightarrow g\left(x\right)=x \] \[ F\left(x\right)=x\arcsin x-\int\frac{x}{\sqrt{1-x^{2}}}dx \] \[ F\left(x\right)=x\arcsin x+\frac{1}{2}\int-2x\left(1-x^{2}\right)^{-\frac{1}{2}}dx \] \[ F\left(x\right)=x\arcsin x+\sqrt{1-x^{2}}+C \] Utilizziamo ora la formula fondamentale del calcolo integrale: \[ \int_{a}^{b}f\left(x\right)dx=F\left(b\right)-F\left(a\right) \] ovvero \[ […]