Area sottesa – Problema 2

Determinare la misura dell’area della parte di piano delimitata dall’asse delle ascisse e dalla curva \[ y=\sin x \] nell’intervallo \[ I=\left[0;\pi\right] \] Soluzione La funzione seno nell’intervallo dato è positiva, e agli estremi di tale intervallo interseca l’asse x. Per determinare l’area richiesta basterà quindi calcolare l’integrale definito della funzione data, con estremi di […]

Area sottesa – Problema 3

Determinare la misura dell’area del trapezoide delimitato dalla curva di equazione \[ y=e^{2x} \] nell’intervallo \[ I=\left[\frac{1}{2};3\right] \] Soluzione Per determinare l’area basterà calcolare l’integrale definito della funzione data, con estremi di integrazione \[ \left\{ \begin{array}{c} a=\frac{1}{2}\\ b=3 \end{array}\right. \] Risulta quindi \[ \int_{\frac{1}{2}}^{3}e^{2x}dx=\left[\frac{e^{2x}}{2}\right]_{\frac{1}{2}}^{3} \] \[ \int_{\frac{1}{2}}^{3}e^{2x}dx=\frac{e^{6}}{2}-\frac{e}{2} \] \[ \int_{\frac{1}{2}}^{3}e^{2x}dx=\frac{e}{2}\left(e^{5}-1\right) \] Otteniamo l’area: \[ A=\frac{e}{2}\left(e^{5}-1\right) […]

Area compresa – Esercizio 2

Determinare le coordinate dei punti comuni alle due curve aventi le equazioni \[ 3x+2y-6=0\;;\; y=\frac{3}{x} \] e calcolare la misura dell’area della parte di piano limitata dagli archi delle due curve considerate, aventi per estremi i punti prima determinati. Soluzione Le due funzioni hanno equazione \[ f\left(x\right)=-\frac{3}{2}x+3\;;\; g\left(x\right)=\frac{3}{x} \] Determiniamo i punti di intersezione delle […]

Area sottesa – Problema 4

Determinare la misura dell’area della parte di piano limitata dall’asse delle ascisse, dal grafico della funzione \[ y=\ln x \] e dalle rette x=1 e x=e Soluzione La funzione logaritmo nell’intervallo dato è positiva. Di conseguenza per determinare l’area richiesta basterà calcolare l’integrale definito della funzione data, con estremi di integrazione \[ \left\{ \begin{array}{c} a=1\\ […]

Integrali indefiniti di riepilogo – Batteria 5

Calcolare i seguenti integrali indefiniti di vario tipo: Esercizio 1 \[ \int e^{-2x}\sin xdx \] Soluzione Questo integrale si può risolvere attuando per due volte il metodo di integrazione per parti: \[ \int e^{-2x}\sin xdx=-\frac{e^{-2x}\sin x}{2}+\frac{1}{2}\int e^{-2x}\cos xdx \] \[ \int e^{-2x}\sin xdx=-\frac{e^{-2x}\sin x}{2}-\frac{e^{-2x}\cos x}{4}-\frac{1}{4}\int e^{-2x}\sin xdx \] \[ \frac{5}{4}\int e^{-2x}\sin xdx=-\frac{e^{-2x}\sin x}{2}-\frac{e^{-2x}\cos x}{4} \] […]

Area compresa tra due curve

Esercizi svolti sul calcolo dell’area compresa tra due funzioni, tramite l’utilizzo degli integrali definiti: Area compresa tra due curve – Esercizio 1Area compresa tra due curve – Esercizio 2Area compresa tra due curve – Esercizio 3 (in arrivo)Area compresa tra due curve – Esercizio 4 (in arrivo)Area compresa tra due curve – Esercizio 5 (in […]

Integrali definiti – Batteria 1

Calcolare i seguenti integrali definiti: Esercizio 1 \[ \int_{0}^{1}\left(3x^{2}-x+2\right)dx \] Soluzione Calcoliamo l’integrale indefinito \[ F\left(x\right)=\int\left(3x^{2}-x+2\right)dx=x^{3}-\frac{x^{2}}{2}+2x+C \] Utilizziamo ora la formula fondamentale del calcolo integrale: \[ \int_{a}^{b}f\left(x\right)dx=F\left(b\right)-F\left(a\right) \] ovvero \[ \int_{0}^{1}\left(3x^{2}-x+2\right)dx=F\left(1\right)-F\left(0\right) \] \[ \int_{0}^{1}\left(3x^{2}-x+2\right)dx=\left(1^{3}-\frac{1^{2}}{2}+2\cdot1+C\right)-\left(0^{3}-\frac{0^{2}}{2}+2\cdot0+C\right) \] \[ \int_{0}^{1}\left(3x^{2}-x+2\right)dx=1-\frac{1}{2}+2=\frac{5}{2} \] Quindi otteniamo: \[ \int_{0}^{1}\left(3x^{2}-x+2\right)dx=\frac{5}{2} \] Esercizio 2 \[ \int_{-\frac{1}{2}}^{1}\left(3x^{3}-4x^{2}+3x-1\right)dx \] Soluzione Calcoliamo l’integrale indefinito \[ F\left(x\right)=\int\left(3x^{3}-4x^{2}+3x-1\right)dx=\frac{3}{4}x^{4}-\frac{4}{3}x^{3}+\frac{3}{2}x^{2}-x+C \] […]

Calcolo di aree di figure piane

Esercizi svolti sul calcolo di aree di figure piane sul piano cartesiano, tramite l’utilizzo degli integrali definiti: Calcolo dell’area sottesa da una curva (5 esercizi svolti)Calcolo dell’area compresa tra due curve (5 esercizi svolti)Area compresa tra due curve – con rappresentazione grafica – (in arrivo)Calcolo di aree – Problemi di riepilogo (in arrivo)

Integrali definiti

L’integrale definito permette di calcolare, nel caso di una funzione di una sola variabile, l’area compresa tra il suo grafico e l’asse delle x, entro un dato intervallo nel dominio. Formulari sugli integrali definiti: Integrali definiti e loro proprietà – Formulario Esercizi svolti sugli integrali definiti: Calcolo di integrali definiti (15 esercizi svolti) Integrali definiti […]

Area sottesa da una curva

Esercizi svolti sul calcolo dell’area sottesa da una funzione, tramite l’utilizzo degli integrali definiti: Area sottesa da una curva – Problema 1Area sottesa da una curva – Problema 2Area sottesa da una curva – Problema 3Area sottesa da una curva – Problema 4Area sottesa da una curva – Problema 5