Applicare la definizione di derivata – Batteria 1

Applicando la definizione di derivata, calcolare la derivata delle seguenti funzioni nel punto indicato a fianco di ciascuna di esse: Esercizio 1 \[ f\left(x\right)=\sqrt{x^{2}-5}\;,\; x_{0}=3 \] Calcoliamo il rapporto incrementale relativamente al punto x=3 e a un generico incremento h: \[ \frac{\Delta y}{\triangle x}=\frac{f\left(3+h\right)-f\left(3\right)}{h} \] Abbiamo che \[ f\left(3\right)=\sqrt{4}=2 \] \[ f\left(3+h\right)=\sqrt{\left(3+h\right)^{2}-5}=\sqrt{h^{2}+6h+4} \] Quindi \[ […]

Problemi di massimo e di minimo

Problemi svolti, raggruppati per argomento, relativi al calcolo dei massimi e dei minimi in un intervallo chiuso e limitato (dettato dalle limitazioni geometriche dell’esercizio): Problemi di massimo e minimo – Triangoli (6 problemi svolti) Problemi di massimo e minimo – Quadrilateri (6 problemi svolti) Problemi di massimo e minimo – Circonferenza (6 problemi svolti) Problemi […]

Massimi e minimi: quadrilateri

Problemi svolti di massimo e minimo sui quadrilateri: Massimi e minimi – Problema 7 Massimi e minimi – Problema 8 Massimi e minimi – Problema 9 Massimi e minimi – Problema 10 Massimi e minimi – Problema 11 Massimi e minimi – Problema 12

Calcolo della derivata terza

Calcolare la derivata terza delle seguenti funzioni: Esercizio 1 \[ f\left(x\right)=x^{\frac{5}{3}} \] Soluzione \[ f’\left(x\right)=\frac{5}{3}x^{\frac{2}{3}} \] Derivando ulteriormente: \[ f”\left(x\right)=\frac{5}{3}\cdot\frac{2}{3}x^{-\frac{1}{3}} \] \[ f”\left(x\right)=\frac{10}{9}x^{-\frac{1}{3}} \] E infine deriviamo per la terza volta: \[ f”’\left(x\right)=\frac{10}{9}\cdot\left(-\frac{1}{3}\right)x^{-\frac{4}{3}} \] \[ f”’\left(x\right)=-\frac{10}{27}x^{-\frac{4}{3}} \] \[ f”’\left(x\right)=-\frac{10}{27\sqrt[3]{x^{4}}} \] Esercizio 2 \[ f\left(x\right)=\ln\sin x \] Soluzione \[ f’\left(x\right)=\frac{\cos x}{\sin x} \] Derivando ulteriormente: \[ […]

Esercizi di riepilogo sulle derivate – Batteria 2

Ricordando le derivate fondamentali, applicando i teoremi sul calcolo della derivata di somma, prodotto e quoziente di funzioni derivabili, e/o applicando il teorema di derivazione delle funzioni composte o le regole che ne conseguono, calcolare le derivate delle seguenti funzioni: Esercizio 1 \[ f\left(x\right)=\ln\left(2\sin x+\sin2x\right)^{2} \] Soluzione \[ f’\left(x\right)=\frac{1}{\left(2\sin x+\sin2x\right)^{2}}\cdot2\left(2\sin x+\sin2x\right)\cdot\left(2\cos x+2\cos2x\right) \] \[ f’\left(x\right)=\frac{2\cdot2\left(\cos […]

Massimi e minimi – Problema 6

Tra tutti triangoli rettangoli aventi costante la somma tra ipotenusa e un cateto, qual è quello di area massima? Soluzione Chiamiamo a e b i cateti. Chiamiamo i l’ipotenusa. Risulta costante la somma \[ s=i+b\rightarrow i=s-b \] Sapendo che l’area del triangolo è \[ A=\frac{ab}{2} \] possiamo scrivere a in funzione di b e di […]

Massimi e minimi – Problema 9

Circoscrivere ad un cerchio di raggio r il rombo di area minima. Soluzione Rappresentiamo un rombo qualunque circoscritto ad una circonferenza: Vista la figura, chiamiamo \[ \overline{OH}=r\;;\;\overline{OA}=a\;;\;\overline{OB}=b \] \[ \overline{AC}=2a \] \[ \overline{BD}=2b \] \[ O\hat{A}B=x \] \[ O\hat{B}A=90^{o}-x \] Dal triangolo rettangolo AOH ricaviamo a in funzione di r e di x: \[ a=\frac{r}{\sin […]

Limiti di funzioni – Forme indeterminate

Calcolare i seguenti limiti, che si presentano in forme indeterminate: Esercizio 1 \[ \lim_{x\rightarrow1}\frac{\sqrt{x}-1}{x-1} \] Questo limite si presenta nella forma indeterminata del tipo \[ \left[\frac{0}{0}\right] \] Scomponendo il denominatore come differenza di quadrati otteniamo \[ \lim_{x\rightarrow1}\frac{\sqrt{x}-1}{x-1}=\lim_{x\rightarrow1}\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\lim_{x\rightarrow1}\frac{1}{\sqrt{x}+1} \] quindi \[ \lim_{x\rightarrow1}\frac{\sqrt{x}-1}{x-1}=\frac{1}{2} \] Esercizio 2 \[ \lim_{x\rightarrow+\infty}\frac{2\log^{2}x+3}{3\log^{2}x+\log x} \] Questo limite si presenta nella forma indeterminata […]

Massimi e minimi – Problema 8

Di tutti i rettangoli aventi lo stesso perimetro 2P, qual’è quello di superficie massima? Soluzione Dato un rettangolo generico di base b e altezza h, l’area vale \[ A=bh \] Visto che il perimetro è costante, possiamo ricavarci h in funzione di b: \[ 2P=2\left(b+h\right)\rightarrow P=b+h \] \[ h=P-b \] Ora la nostra funzione A […]

Limiti di funzioni – Esercizi di riepilogo

Calcolare i seguenti limiti, che spesso si presentano in forme indeterminate: Esercizio 1 \[ \lim_{x\rightarrow\left(\frac{\pi}{3}\right)^{+}}e^{\frac{1}{2\cos x-1}} \] Questo limite NON si presenta in forma indeterminata, perchè \[ \lim_{x\rightarrow\left(\frac{\pi}{3}\right)^{+}}\cos x=\left(\frac{1}{2}\right)^{-} \] quindi l’esponente \[ \lim_{x\rightarrow\left(\frac{\pi}{3}\right)^{+}}\frac{1}{2\cos x-1}=\frac{1}{1^{-}-1}=\frac{1}{0^{-}}=-\infty \] Di conseguenza \[ \lim_{x\rightarrow\left(\frac{\pi}{3}\right)^{+}}e^{\frac{1}{2\cos x-1}}=\lim_{x\rightarrow\left(\frac{\pi}{3}\right)^{+}}e^{-\infty}=0 \] Esercizio 2 \[ \lim_{x\rightarrow\infty}\left(\frac{x+1}{x-1}\right)^{x} \] Questo limite si presenta, all’interno della parentesi, nella […]