Limiti di funzioni composte – Batt. 1

Calcolare i seguenti limiti: Esercizio 1 \[ \lim_{x\rightarrow2}\sqrt{x^{2}+3x+6} \] Calcoliamo il limite della funzione che sta sotto radice: \[ \lim_{x\rightarrow2}\left(x^{2}+3x+6\right)=4+6+6=16 \] Visto che il radicando tende a 16, avremo: \[ \lim_{x\rightarrow2}\sqrt{x^{2}+3x+6}=\lim_{x\rightarrow2}\sqrt{16}=4 \] Esercizio 2 \[ \lim_{x\rightarrow1}\sqrt{\frac{x^{2}-1}{x-1}} \] Calcoliamo il limite della funzione che sta sotto radice: \[ \lim_{x\rightarrow1}\frac{x^{2}-1}{x-1}=\lim_{x\rightarrow1}\frac{\left(x-1\right)\left(x+1\right)}{x-1}=\lim_{x\rightarrow1}\left(x+1\right)=2 \] Visto che il radicando tende a […]

Studio di funzioni – Esercizio 91

Studiare la seguente funzione: \[ f\left(x\right)=\frac{e^{x}-1}{x} \] 1) Dominio: \[ x\neq0 \] \[ D=\mathbb{R}-\left\{ 0\right\} \] 2) Simmetrie: \[ f\left(-x\right)=\frac{e^{-x}-1}{-x}=-\frac{e^{-x}-1}{x} \] \[ f\left(-x\right)\neq f\left(x\right) \] \[ f\left(-x\right)\neq-f\left(x\right) \] f(x) non è ne pari, ne dispari. 3) Intersezioni con gli assi: \[ x=0\:\notin D \] \[ \left\{ \begin{array}{c} f\left(x\right)=0\\ e^{x}-1=0 \end{array}\right.\rightarrow\left\{ \begin{array}{c} f\left(x\right)=0\\ e^{x}=1 \end{array}\right.\rightarrow\left\{ \begin{array}{c} […]

Studio di funzioni – Esercizi di riepilogo

Esercizi svolti di riepilogo sullo studio del grafico di una funzione: Studio di funzioni – Esercizio 89 Studio di funzioni – Esercizio 90 Studio di funzioni – Esercizio 91 Studio di funzioni – Esercizio 92 Studio di funzioni – Esercizio 93 Studio di funzioni – Esercizio 94 Studio di funzioni – Esercizio 95 Studio di […]

Studio di funzioni – Esercizio 89

Studiare la seguente funzione: \[ f\left(x\right)=\sqrt[3]{x^{2}}e^{x} \] 1) Dominio: \[ D=\mathbb{R} \] 2) Simmetrie: \[ f\left(-x\right)=\sqrt[3]{\left(-x\right)^{2}}e^{-x}=\sqrt[3]{x^{2}}e^{-x} \] \[ f\left(-x\right)\neq f\left(x\right) \] \[ f\left(-x\right)\neq-f\left(x\right) \] f(x) non è ne pari, ne dispari. 3) Intersezioni con gli assi: \[ \left\{ \begin{array}{c} x=0\\ f\left(x\right)=0 \end{array}\right.\rightarrow\left(0;0\right)\in f\left(x\right) \] 4) Segno: \[ f\left(x\right)\geq0\;\forall x\in\mathbb{R} \] 5) Limiti: \[ \lim_{x\rightarrow+\infty}f\left(x\right)=+\infty \] […]

Studio di funzioni – Esercizio 85

Studiare la seguente funzione: \[ f\left(x\right)=\sqrt{1+\left|x\right|} \] Innanzitutto la funzione si può anche scrivere in questo modo: Se \[ x\geq0 \] allora: \[ f\left(x\right)=\sqrt{1+x} \] Se \[ x<0 \] allora: \[ f\left(x\right)=\sqrt{1-x} \] 1) Dominio: \[ 1+\left|x\right|\geq0\rightarrow\left|x\right|\geq-1\;\forall x\mathbb{\in R} \] \[ D=\mathbb{R} \] 2) Simmetrie: \[ f\left(-x\right)=\sqrt{1+\left|-x\right|}=\sqrt{1+\left|x\right|}=f\left(x\right) \] f(x) è pari: per comodità la possiamo […]

Studio di funzioni – Esercizio 88

Studiare la seguente funzione: \[ f\left(x\right)=\sqrt{x^{2}-\left|x\right|} \] Innanzitutto la funzione si può anche scrivere in questo modo: Se \[ x\geq0 \] allora: \[ f\left(x\right)=\sqrt{x^{2}-x} \] Se \[ x<0 \] allora: \[ f\left(x\right)=\sqrt{x^{2}+x} \] 1) Dominio: \[ \left\{ \begin{array}{c} x\geq0\\ x^{2}-x\geq0 \end{array}\right.\cup\left\{ \begin{array}{c} x<0\\ x^{2}+x\geq0 \end{array}\right. \] \[ \left\{ \begin{array}{c} x\geq0\\ x\leq0\:\vee\: x\geq1 \end{array}\right.\cup\left\{ \begin{array}{c} x<0\\ […]

Studio di funzioni – Esercizio 87

Studiare la seguente funzione: \[ f\left(x\right)=\sqrt{\frac{1-\left|x\right|}{1+\left|x\right|}} \] Innanzitutto la funzione si può anche scrivere in questo modo: Se \[ x\geq0 \] allora: \[ f\left(x\right)=\sqrt{\frac{1-x}{1+x}} \] Se \[ x<0 \] allora: \[ f\left(x\right)=\sqrt{\frac{1+x}{1-x}} \] 1) Dominio: \[ \frac{1-\left|x\right|}{1+\left|x\right|}\geq0 \] \[ Num\geq0\rightarrow1-\left|x\right|\geq0\rightarrow\left|x\right|\leq1\rightarrow x\in\left[-1;+1\right] \] \[ Den>0\rightarrow1+\left|x\right|>0\rightarrow\left|x\right|>-1\;\forall x\in\mathbb{R} \] \[ D=\left[-1;+1\right] \] 2) Simmetrie: \[ f\left(-x\right)=\sqrt{\frac{1-\left|-x\right|}{1+\left|-x\right|}}=\sqrt{\frac{1-\left|x\right|}{1+\left|x\right|}}=f\left(x\right) \] f(x) […]

Studio di funzioni – Esercizio 86

Studiare la seguente funzione: \[ f\left(x\right)=\sqrt{1-\left|x\right|} \] Innanzitutto la funzione si può anche scrivere in questo modo: Se \[ x\geq0 \] allora: \[ f\left(x\right)=\sqrt{1-x} \] Se \[ x<0 \] allora: \[ f\left(x\right)=\sqrt{1+x} \] 1) Dominio: \[ 1-\left|x\right|\geq0\rightarrow\left|x\right|\leq+1\rightarrow x\in\left[-1;+1\right] \] \[ D=\left[-1:+1\right] \] 2) Simmetrie: \[ f\left(-x\right)=\sqrt{1-\left|-x\right|}=\sqrt{1-\left|x\right|}=f\left(x\right) \] f(x) è pari: per comodità la possiamo studiare […]

Limite finito per x che tende all’infinito – Batteria 1

Verificare le seguenti uguaglianze, applicando la definizione di limite finito di una funzione per x che tende all’infinito: Esercizio 1 \[ \lim_{x\rightarrow\infty}\frac{x}{x+2}=1 \] La funzione è definita per \[ x\neq-2 \] Occorre mostrare che, comunque si scelga \[ \varepsilon>0 \] arbitrariamente piccolo, la disuguaglianza \[ \left|\frac{x}{x+2}-1\right|

Limiti di funzioni razionali fratte – Batteria 2

Calcolare i seguenti limiti: Esercizio 1 \[ \lim_{x\rightarrow\infty}\frac{3x^{2}+5x-1}{4x^{2}-5x+1} \] \[ \lim_{x\rightarrow\infty}\frac{3x^{2}+5x-1}{4x^{2}-5x+1}=\lim_{x\rightarrow\infty}\frac{x^{2}\left(3+\frac{5}{x}-\frac{1}{x^{2}}\right)}{x^{2}\left(4-\frac{5}{x}+\frac{1}{x^{2}}\right)}=\lim_{x\rightarrow\infty}\frac{3+\frac{5}{x}-\frac{1}{x^{2}}}{4-\frac{5}{x}+\frac{1}{x^{2}}}=\frac{3}{4} \] Esercizio 2 \[ \lim_{x\rightarrow\pm\infty}\frac{x^{2}-3x+5}{x+1} \] \[ \lim_{x\rightarrow\pm\infty}\frac{x^{2}-3x+5}{x+1}=\lim_{x\rightarrow\pm\infty}\frac{x^{2}\left(1+\frac{3}{x}+\frac{5}{x^{2}}\right)}{x\left(1+\frac{1}{x}\right)}=\lim_{x\rightarrow\pm\infty}\frac{x\left(1+\frac{3}{x}+\frac{5}{x^{2}}\right)}{1+\frac{1}{x}}=\pm\infty \] Esercizio 3 \[ \lim_{x\rightarrow-\infty}\frac{x^{3}-4x+1}{2-3x} \] \[ \lim_{x\rightarrow-\infty}\frac{x^{3}-4x+1}{2-3x}=\lim_{x\rightarrow-\infty}\frac{x^{3}\left(1-\frac{4}{x}+\frac{1}{x^{3}}\right)}{x\left(\frac{2}{x}-3\right)}=\lim_{x\rightarrow-\infty}\frac{x^{2}\left(1-\frac{4}{x}+\frac{1}{x^{3}}\right)}{\frac{2}{x}-3}=\frac{+\infty}{-3} \] \[ \lim_{x\rightarrow-\infty}\frac{x^{3}-4x+1}{2-3x}=-\infty \] Esercizio 4 \[ \lim_{x\rightarrow+\infty}\frac{5}{x^{3}+x-1} \] \[ \lim_{x\rightarrow+\infty}\frac{5}{x^{3}+x-1}=\lim_{x\rightarrow+\infty}\frac{5}{x^{3}\left(1+\frac{1}{x^{2}}-\frac{1}{x^{3}}\right)}=\frac{5}{+\infty}=0^{+} \]