Limiti notevoli – Batteria 1
Ricordando i limiti notevoli, calcolare i seguenti limiti: Esercizio 1 \[ \lim_{x\rightarrow\infty}\left(1+\frac{1}{x}\right)^{2x} \] Sfruttando una proprietà delle potenze, il limite si può scrivere così: \[ \lim_{x\rightarrow\infty}\left(1+\frac{1}{x}\right)^{2x}=\lim_{x\rightarrow\infty}\left[\left(1+\frac{1}{x}\right)^{x}\right]^{2} \] Ricordando il limite notevole \[ \lim_{x\rightarrow\infty}\left(1+\frac{1}{x}\right)^{x}=e \] avremo \[ \lim_{x\rightarrow\infty}\left(1+\frac{1}{x}\right)^{2x}=\lim_{x\rightarrow\infty}\left[\left(1+\frac{1}{x}\right)^{x}\right]^{2}=e^{2} \] Esercizio 2 \[ \lim_{x\rightarrow0}\left(1+2x\right)^{\frac{1}{x}} \] operiamo la sostituzione \[ z=\frac{1}{2x}\rightarrow x=\frac{1}{2z} \] Osserviamo che \[ \lim_{x\rightarrow0}z=\lim_{x\rightarrow0}\frac{1}{2x}=\infty \] […]