Area sottesa da una curva

Esercizi svolti sul calcolo dell’area sottesa da una funzione, tramite l’utilizzo degli integrali definiti: Area sottesa da una curva – Problema 1Area sottesa da una curva – Problema 2Area sottesa da una curva – Problema 3Area sottesa da una curva – Problema 4Area sottesa da una curva – Problema 5

Calcolo di aree di figure piane

Esercizi svolti sul calcolo di aree di figure piane sul piano cartesiano, tramite l’utilizzo degli integrali definiti: Calcolo dell’area sottesa da una curva (5 esercizi svolti)Calcolo dell’area compresa tra due curve (5 esercizi svolti)Area compresa tra due curve – con rappresentazione grafica – (in arrivo)Calcolo di aree – Problemi di riepilogo (in arrivo)

Area compresa tra due curve

Esercizi svolti sul calcolo dell’area compresa tra due funzioni, tramite l’utilizzo degli integrali definiti: Area compresa tra due curve – Esercizio 1Area compresa tra due curve – Esercizio 2Area compresa tra due curve – Esercizio 3 (in arrivo)Area compresa tra due curve – Esercizio 4 (in arrivo)Area compresa tra due curve – Esercizio 5 (in […]

Area sottesa – Problema 5

Determinare la misura dell’area della parte di piano delimitata dall’asse delle y e dalla parabola di equazione \[ x=y^{2}-4 \] Soluzione La parabola ad asse orizzontale interseca l’asse y nei punti \[ \left\{ \begin{array}{c} y_{1}=-2\\ y_{2}=+2 \end{array}\right. \] La funzione data ha come variabile indipendente la y. Di conseguenza per determinare l’area richiesta basterà calcolare […]

Area sottesa – Problema 4

Determinare la misura dell’area della parte di piano limitata dall’asse delle ascisse, dal grafico della funzione \[ y=\ln x \] e dalle rette x=1 e x=e Soluzione La funzione logaritmo nell’intervallo dato è positiva. Di conseguenza per determinare l’area richiesta basterà calcolare l’integrale definito della funzione data, con estremi di integrazione \[ \left\{ \begin{array}{c} a=1\\ […]

Area sottesa – Problema 3

Determinare la misura dell’area del trapezoide delimitato dalla curva di equazione \[ y=e^{2x} \] nell’intervallo \[ I=\left[\frac{1}{2};3\right] \] Soluzione Per determinare l’area basterà calcolare l’integrale definito della funzione data, con estremi di integrazione \[ \left\{ \begin{array}{c} a=\frac{1}{2}\\ b=3 \end{array}\right. \] Risulta quindi \[ \int_{\frac{1}{2}}^{3}e^{2x}dx=\left[\frac{e^{2x}}{2}\right]_{\frac{1}{2}}^{3} \] \[ \int_{\frac{1}{2}}^{3}e^{2x}dx=\frac{e^{6}}{2}-\frac{e}{2} \] \[ \int_{\frac{1}{2}}^{3}e^{2x}dx=\frac{e}{2}\left(e^{5}-1\right) \] Otteniamo l’area: \[ A=\frac{e}{2}\left(e^{5}-1\right) […]

Area sottesa – Problema 1

Determinare la misura dell’area della parte di piano delimitata dalla curva di equazione \[ y=-x^{2}+4x-3 \] e dall’asse delle x. Soluzione La funzione data è una parabola con asse di simmetria parallelo all’asse y, rivolta verso il basso. Calcoliamo le sue intersezioni con l’asse x: \[ \left\{ \begin{array}{c} y=0\\ y=-x^{2}+4x-3 \end{array}\right. \] \[ -x^{2}+4x-3=0\rightarrow\left\{ \begin{array}{c} […]

Integrali per sostituzione – Batteria 1

Calcolare i seguenti integrali indefiniti applicando il metodo di integrazione per sostituzione: Esercizio 1 \[ \int e^{3x-1}dx \] Ponendo \[ t=3x-1 \] ricaviamo x: \[ x=\frac{1+t}{3} \] e quindi \[ \frac{dx}{dt}=\frac{1}{3}\rightarrow dx=\frac{1}{3}dt \] Ora, ritornando all’integrale iniziale: \[ \int e^{3x-1}dx=\int e^{t}\cdot\frac{1}{3}dt \] \[ \int e^{3x-1}dx=\frac{1}{3}\int e^{t}dt \] \[ \int e^{3x-1}dx=\frac{1}{3}e^{t}+C \] Risulta quindi: \[ \int […]

Integrali per parti – Batteria 3

Calcolare i seguenti integrali indefiniti applicando il metodo di integrazione per parti: Esercizio 1 \[ \int\sin\ln xdx \] L’integrale dato può essere scritto come \[ \int\sin\ln xdx=\int1\cdot\sin\ln xdx \] Chiamiamo \[ f\left(x\right)=\sin\ln x \] \[ g’\left(x\right)=1 \] di conseguenza \[ f’\left(x\right)=\cos\ln x\cdot\frac{1}{x} \] \[ g\left(x\right)=x \] Ora applichiamo la formula di integrazione per parti \[ […]

Integrali indefiniti di riepilogo

Esercizi svolti sul calcolo degli integrali indefiniti con l’utilizzo di metodi di vario tipo: integrali immediati, integrali di funzioni razionali fratte, integrali per parti e per sostituzione. Integrali indefiniti di riepilogo – Batteria 1 (3 esercizi svolti) Integrali indefiniti di riepilogo – Batteria 2 (3 esercizi svolti) Integrali indefiniti di riepilogo – Batteria 3 (3 […]